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Abstract. In this paper stationary potential-energy and complementary-energy principles are formulated for
boundary-value problems for compressible or incompressible nonlinearly elastic membranes, and full justification
for adoption of the complementary principle is provided. The stationary principles are then extended to extremum
principles, which provide upper and lower bounds on the energy functional associated with the solution of a given
problem. The principles are then illustrated by their application to the nonlinear problem of the axially symmetric
static deformation of an isotropic elastic membrane. In its undeformed natural configuration the membrane has the
form of a circular cylindrical surface. The cylinder is subject to a prescribed (tensile) axial force with the ends of
the cylinder constrained so that their radii remain constant. The alternative boundary condition in which the axial
displacement of the ends is prescribed instead of the axial force is also considered.

The extremum principles are applied first without restriction on the form of strain-energy function in order to
obtain primitive bounds on the energy of Voigt and Reuss type commonly used in composite-material mechanics.
Then, for particular forms of strain-energy function, specific bounds are obtained by selecting suitable trial de-
formation and stress fields and the bounds are optimized using a numerical procedure (which is readily adapted for
other forms of strain-energy function). It is found that these bounds are very close and hence give a good estimate
of the actual energy. The associated deformed geometry of the membrane is described together with the resulting
principal stresses.
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1. Introduction

In this paper we consider a finite axially symmetric static deformation of an incompressible,
isotropic elastic membrane whose undeformed natural reference configuration is a circular
cylindrical surface. Specifically, we consider the deformation arising fromeither (a) a pre-
scribed axial tensile force, or (b) prescribed axial displacement of the ends of the cylinder
with, in each case, the radii of the cylinder ends held fixed. The inner and outer cylindrical
surfaces are traction free. For problem (b) some numerical solutions were presented by Stoker
[1] in respect of the Mooney–Rivlin form of strain-energy function, but there is, apparently,
no other treatment of these problems available in the literature. However, we note that the
problem of an axially extended membrane cylinder with internal pressure applied to ensure
that the circular cylindrical shape is maintained has been discussed in detail by Haughton and
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Ogden [2] with particular reference to bifurcation from the circular cylindrical shape. We refer
to this paper for citation of other relevant work.

For the problem at hand, as is commonly the case in nonlinear elasticity, the derivation
of a closed-form solution would not seem to be possible, so that a numerical approach is
required. Here, numerical solution is effected through the use of variational principles and
associated extremum principles. Extensive discussion of variational principles for nonlinear
elasticity is contained in Ogden [3, Chapter 5], for example, where problems associated with
the construction of a true complementary energy principle are highlighted. Detailed references
to the literature, which is concerned mostly with three-dimensional bodies, are given in [4].
The development and application of variational principles in nonlinear elasticity has also been
considered by Lee and Shield [5, 6] and Haddow and Ogden [7]. Relatively little work has
been set in the context of membrane theory, although application to a flat circular membrane
under different boundary conditions has been discussed by Koiter [8], Lee and Shield [6] and
Liu et al. [9] for specific forms of strain-energy function.

The problems mentioned in the first paragraph above provide motivation for a general
nonlinearly elastic membrane formulation of complementary variational and extremum prin-
ciples. Such a formulation is provided in this paper as the vehicle for obtaining approximate
solutions for these and related membrane problems.

The basic equations are summarized in Section 2. Since the considered body is a membrane
under tensile loading, a true complementary principle can be constructed unambiguously, as
described in Section 3 for a general class of membrane problems. Conditions which guarantee
the existence of a unique complementary energy function also ensure that the energy func-
tional is minimized and the complementary energy functional is maximized for the (unique)
actual solution of the problem. Details of this are given in respect of a general form of (incom-
pressible, isotropic) strain-energy function. The stated conditions are exemplified in respect
of both the neo-Hookean and Varga strain-energy functions, and in the latter case an explicit
form of the complementary energy function is given. It is noted that the required conditions
also hold for many commonly used forms of strain-energy function.

In Section 4 the specific problems for a cylindrical membrane are formulated and appro-
priate specializations of the energy and complementary energy are derived. Primitive bounds
of Voigt and Reuss type (upper and lower bounds, respectively) on the energy functional as-
sociated with the actual solution are obtained by considering uniform admissible deformation
and stress fields respectively without specialization of the strain-energy function.

The numerical approximation and optimization procedure is described in Section 5 for
both the energy functional and the complementary energy functional. In the latter case we
use a polynomial form of statically admissible stress field and the coefficients of the polyno-
mial are chosen so as to maximize the complementary energy functional. This differs from
the approach proposed by Lee and Shield [5], which was based on a statically admissible
deformation gradient field.

In Section 6 numerical results are presented in respect of the neo-Hookean material and
the closeness of the upper and lower bounds on the energy functional is demonstrated. The
meridian curves obtained from the two principles are shown graphically and the variations
of the principal stresses with the axial coordinate are also illustrated. The results confirm the
positiveness of the principal stresses, which is fundamental to the validity of the analysis.
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2. Basic equations

In formulating the stationary principles of energy and complementary energy and the associ-
ated extremum principles we follow the development described in Ogden [3, Chapter 5] and
Haddow and Ogden [7], but with appropriate modification for the case of a membrane.

For a general treatment of the membrane equations and discussion of the membrane ap-
proximation appropriate to the present circumstances we refer to Haughton and Ogden [10],
or, for specialization to the axially symmetric case, to Haughton and Ogden [2].

Let the membrane be identified with its middle surfaceB0 in its (undeformed, unstressed)
natural configuration and let∂B0 denote the bounding curve ofB0. We takeB0 as the refer-
ence configuration and letX denote the position vector of a point onB0 relative to some fixed
origin. Letχ denote the deformation andx the position vector of the material pointX in the
deformed configuration, so that

x = χ(X) X ∈ B0, (2.1)

and letB denote the image ofB0 under the deformation.
Thesurface deformation gradientonB0, denotedF, is defined as

F = Gradχ, (2.2)

where Grad is the surface gradient operator onB0. We may also expandF in the form

F = λ1v(1) ⊗ u(1) + λ2v(2) ⊗ u(2), (2.3)

whereu(1),u(2) are the Lagrangian principal axes andv(1), v(2) the Eulerian principal axes
of the deformation ofB0 (locally tangential toB0 and B respectively) andλ1, λ2 are the
associated principal stretches.

We may extend (2.3) to the deformation gradient, denotedA, of the bulk membrane mater-
ial evaluated onB0 by writing

A = F+ λ3v(3) ⊗ u(3), (2.4)

whereλ3 is the stretch normal to the membrane,u(3) is normal to the surfaceB0, taken in the
sense thatu(1),u(2),u(3) form a right-handed orthonormal triad, andv(3) is the corresponding
normal toB, with v(1), v(2), v(3) also forming a right-handed orthonormal triad.

Analogously to (2.4) the nominal stress tensorSonB0 may be written

S= 6 + t3u(3) ⊗ v(3), (2.5)

where6 represents the stress in the surfaceB0 andt3 the normal stress onB0.
The elastic properties of the membrane surfaceB0 may be characterized by use of the

strain-energy function of the bulk material averaged through the thickness of the membrane in
the reference configuration, as described by Haughton and Ogden [10]. The resulting energy
function (per unit volume of the bulk material) may be regarded as a function ofA and defined
onB0,W(A) say, with, for an incompressible material, the constraint
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detA ≡ λ1λ2λ3 = 1 (2.6)

satisfied.
More specifically, for an isotropic material, to which attention is now confined,W de-

pends onA only through the principal stretches (evaluated onB0). Thus,W(λ1, λ2, λ3), this
dependence being indifferent to pairwise interchange ofλ1, λ2, λ3. The associated principal
Biot stressest1, t2, t3 onB0 are given by

t1 = ∂W

∂λ1
, t2 = ∂W

∂λ2
, t3 = ∂W

∂λ3
(2.7)

for an unconstrained material, and by

t1 = ∂W

∂λ1
− pλ−1

1 , t2 = ∂W

∂λ2
− pλ−1

2 , t3 = ∂W

∂λ3
− pλ−1

3 (2.8)

for an incompressible material subject to (2.6).
For an isotropic material6 may be written

6 = t1u(1) ⊗ v(1) + t2u(2) ⊗ v(2). (2.9)

We adopt themembrane approximation, which, in the present context, may be written
simply as t3 = 0. For an incompressible material we haveλ3 = λ−1

1 λ−1
2 , while for an

unconstrained materialt3 = ∂W/∂λ3 = 0 enablesλ3 to be expressed, at least implicitly,
in terms ofλ1 andλ2. In either caseW may be treated as a function ofλ1 andλ2 only and we
write

Ŵ (λ1, λ2) = W(λ1, λ2, λ3), (2.10)

with λ3 on the right-hand side replaced by the appropriate function ofλ1 andλ2.
For either an incompressible or an unconstrained material it is then easy to see, using

t3 = 0, that

t1 = ∂Ŵ

∂λ1
, t2 = ∂Ŵ

∂λ2
. (2.11)

Henceforth, we need not distinguish between unconstrained and incompressible materials and
we characterize the material properties of the membrane throughŴ(λ1, λ2) = Ŵ(λ2, λ1).
We may also regard̂W as a function ofF and writeŴ (F) to avoid duplication of notation.
Then

6 = ∂Ŵ

∂F
. (2.12)

When there are no tractions on the membrane surfaces the equations of equilibrium may
be written in the form
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Div6 = 0 onB0, (2.13)

where Div is the divergence operator onB0. Expressions for the components of the left-hand
side of (2.13) may be found in, for example, Haughton and Ogden [10], but they are not
needed here.

Equation (2.13) is coupled with edge conditions on∂B0. Such conditions are exemplified
by

x = ξ(X) on ∂Bx
0 , (2.14)

6TN = σ (X) on ∂Bσ
0 , (2.15)

where∂B0 = ∂Bx
0 ∪ ∂Bσ

0 , T denotes transpose,N is the unit outward normal to the edge
∂B0 lying (locally) in the tangent plane toB0 andξ andσ are prescribed functions, the latter
representing dead loading. Other types of edge loading may also be considered. In particular,
we shall allow for the possibility that∂Bx

0 and∂Bσ
0 overlap in the sense that complementary

components ofξ andσ are prescribed on∂Bx
0 ∩ ∂Bσ

0 .
We recall (Ogden [3, Chapter 6], [4]) that for an isotropic elastic material we have the polar

decompositionS= TRT , whereT is the Biot stress tensor andR is the rotation arising in the
(unique) polar decompositionA = RU of the deformation gradient, whereU is the (positive
definite, symmetric) right stretch tensor. In the present context the appropriate specialization
of this is

6 = TRT , (2.16)

and, for a given6, the principal axesu(1),u(2) of T are determined from

T2 = 66T , (2.17)

where (witht3 = 0) T has the spectral decomposition

T = t1u(1) ⊗ u(1) + t2u(2) ⊗ u(2) (2.18)

and the rotationR may be expressed in the form

R = v(1) ⊗ u(1) + v(2) ⊗ u(2). (2.19)

If attention is restricted to membrane stresses which are non-compressive, so that

t1 > 0, t2 > 0, (2.20)

then, for a given6 such that det6 ≡ t1t2 > 0 the polar decomposition (2.16) is unique. In fact,
the strict versions of (2.20) are consequences of the strict local convexity ofŴ (F) adopted in
Section 3, which has important implications for the construction of a complementary energy
function and for the validity of the principles of minimum energy and maximum complement-
ary energy. The restrictions (2.20) ensure that wrinkling of the membrane is avoided (see, for
example, Pipkin [11]).
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3. Variational and extremum principles

3.1. POTENTIAL ENERGY

For the considered membrane problem thepotential energy functionalmay be written in the
form

E{χ} =
∫

B0

Ŵ (λ1, λ2)dA−
∫
∂Bσ

0

σ · χ dS, (3.1)

where dA is the area element onB0 and dS is an element of arclength on∂B0. In (3.1) we have
taken the reference membrane thickness to be uniform andE to be definedper unit membrane
thickness. In the integral over∂Bσ0 one, two or all three components ofσ may be prescribed,
but the complementary components ofχ are prescribed on∂Bσ

0 ∩ ∂Bx
0 in the cases in which

one or two components ofσ are specified. If the traction is not prescribed on any part of∂B0

then the integral over∂Bσ
0 is omitted from (3.1).

Let a superposed dot denote a variation in the quantity concerned. Then, considering
variations inχ subject to the kinematical boundary conditions, we have

˙̂
W = t1λ̇1+ t2λ̇2 = tr(6Ḟ), (3.2)

where use has been made of (2.3), (2.9) and (2.11).
On using (3.2) and standard manipulations we may write the first variation ofE in the form

Ė = −
∫

B0

(Div 6) · χ̇ dA+
∫
∂Bσ

0

(6TN− σ ) · χ̇ dS. (3.3)

Admissible variationṡχ are taken to be continuously differentiable inB0 and continuous on
∂B0. Sinceχ̇ is an arbitrary admissible variation, it follows from the principle of virtual work
thatĖ = 0 leads to Equations (2.13) and (2.15). Thus, we have thestationary energy principle,
which states that, within the class of kinematically admissible variations,E is stationary if and
only if χ is a solution of the boundary-value problem defined by (2.12)–(2.15) with (2.2).

For an actual solution the second variation ofE, denotedË may be obtained, after some
manipulation, in the form

Ë =
∫

B0

tr (6̇Ḟ)dA, (3.4)

where6̇ is the variation in6 induced by that inχ . An expression for tr(6̇Ḟ)may be deduced
from its counterpart for bulk solids given in Ogden [3, p. 449] for incompressible materials.
Alternatively, if (2.3) and (2.9) are used it may be calculated directly in the form

tr (6̇Ḟ) = λ2
1Ŵ11η

2
11+ 2λ1λ2Ŵ12η11η22+ λ2

2Ŵ22η
2
22+

λ1Ŵ1− λ2Ŵ2

λ2
1− λ2

2

(λ2
1η

2
21+ λ2

2η
2
12)

+2
λ2Ŵ1− λ1Ŵ2

λ2
1− λ2

2

λ1λ2η12η21+ λ1Ŵ1η
2
31+ λ2Ŵ2η

2
32, (3.5)

whereŴ1 = ∂Ŵ/∂λ1, Ŵ11 = ∂2Ŵ/∂λ2
1, etc. andηij are the components ofḞF−1.
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Necessary and sufficient conditions for the inequality tr(6̇Ḟ) > 0 to hold are(
Ŵ11 Ŵ12

Ŵ12 Ŵ22

)
is positive definite, (3.6)

Ŵ1− Ŵ2

λ1− λ2
> 0, (3.7)

Ŵ1 > 0, Ŵ2 > 0, (3.8)

jointly. Note that (3.7) and (3.8) together imply that

λ1Ŵ1 − λ2Ŵ2

λ2
1− λ2

2

> 0. (3.9)

The condition (3.6) is a statement of strict local convexity ofŴ(λ1, λ2). If (3.6) holds
for all λ1 andλ2 then (3.7) follows. The additional inequalities (3.8) then ensure thatŴ is
(locally) strictly convex as a function ofF. For convexity rather than strict convexity positive
definiteness is replaced by positive semi-definiteness in (3.6) and> by> in (3.7) and (3.8), in
which case the results were obtained by Pipkin [11]. We emphasize that these results are valid
for either unconstrained or incompressible materials.

If (3.6)–(3.8) hold, thenË > 0 for all admissible variations and the energy functional
E associated with an actual solution (assuming such a solution exists) is alocal minimum.
Further, we emphasize that if the region of(λ1, λ2)-space for which (3.6)–(3.8) hold is convex
then it follows thatŴ is globallystrictly convex as a function ofF. Under these circumstances
the actual solutionχ is unique and provides aglobal minimumof the energy. Moreover, the
stress-deformation relation (2.12) is then uniquely invertible. Thus, we have theextremum
principle of minimum potential energyin the form

E{χ∗} > E{χ} (3.10)

for all admissible deformation fieldsχ∗, whereχ is the actual solution and equality holds
if and only if χ∗ ≡ χ . Admissible fields are taken to be twice-continuously differentiable
deformationsχ∗ which satisfy the prescribed conditions on∂Bx

0 and∂Bσ
0 ∩ ∂Bx

0. Hence-
forth, we assume that the conditions for the validity of (3.10) are met, and in Section 3.3 we
demonstrate that two common forms of strain-energy function do indeed satisfy the conditions
for this to be the case.

The explicit form ofE{χ∗} in (3.10) is

E{χ∗} =
∫

B0

Ŵ (λ∗1, λ
∗
2)dA−

∫
∂Bσ

0

σ · χ∗ dS, (3.11)

whereλ∗1, λ
∗
2 are the principal stretches calculated fromχ∗.

3.2. COMPLEMENTARY ENERGY

For an actual solution Equation (3.1) may be re-written in the form
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E{χ} =
∫
∂Bx

0

(6TN) · ξ dS −
∫

B0

[tr(6F)− Ŵ(F)]dA, (3.12)

where6 is the actual stress field associated withχ , with ξ (or some of its components)
prescribed on∂Bx

0.
The integrand of the integral overB0 in (3.12) may be written

tr(6F)− Ŵ (F) = λ1t1+ λ2t2− Ŵ (λ1, λ2). (3.13)

Under the assumptions adopted in Section 3.1 strict convexity ofŴ (λ1, λ2) is guaranteed and
ensures the existence of a unique Legendre transformŴc(t1, t2) given by

Ŵc(t1, t2) = λ1t1 + λ2t2− Ŵ (λ1, λ2), (3.14)

interpreted as thecomplementary energy per unit reference volume. Moreover, the inverse of
the stress-stretch relations (2.11) is unique and can be written

λ1 = ∂Ŵc

∂t1
, λ2 = ∂Ŵc

∂t2
. (3.15)

As noted above, for a given nominal stress6 a unique Biot stressT with t3 = 0 and
t1 > 0, t2 > 0 is defined and this is consistent with (3.8). Using (3.13) and (3.14) we may
therefore regard the right-hand side of (3.12) as a functional of6 and write

Ec{6} =
∫
∂Bx

0

(6TN) · ξdS −
∫

B0

Ŵc(t1, t2)dA, (3.16)

which defines the complementary energy functional for the actual solution.
For admissible variationṡ6, continuously differentiable and satisfying the equilibrium

equation and stress boundary condition the first variation ofŴc may be written

˙̂
Wc = λ1ṫ1+ λ2ṫ2 = tr(F6̇), (3.17)

analogously to (3.2).
Taking the first variation of (3.16) and using (3.17) followed by application of the diver-

gence theorem we obtain

Ėc =
∫

B0

tr[(Gradχ − F)6̇]dA, (3.18)

whereχ is a deformation function satisfying the placement boundary condition. This provides
the complementary variational principlefor an isotropic elastic membrane. It states that,
within the class of statically admissible variations,Ec is stationary if and only if6 is a
solution of the boundary-value problem, with deformation gradientF, as constructed above,
being the gradient of a deformationχ satisfying the kinematical boundary conditions. Note,
however, that the ‘only if’ part does not follow directly from (3.18) since the variations6̇,
being divergence free, are not entirely arbitrary. The result is reached indirectly through the
use of stress functions in a standard way.
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Analogously to the procedure for calculating̈E, we calculate the second variation̈Ec for
an actual solution. This leads to

Ëc = −
∫

B0

tr (6̇Ḟ)dA, (3.19)

whereḞ is the variation inF induced by that in6.
Thus, under the inequalities (3.6)–(3.8) which ensure thatË > 0 we haveËc < 0.

Therefore, for an actual solution the complementary energy is alocal maximum. Under the
conditions which ensure thatE{χ} is a global minimum for the actual solutionχ , it follows
thatEc{6} is aglobal maximumof the complementary energy for the actual stress field6.

For any statically admissible stress field6∗, that is6∗ satisfying the equilibrium Equation
(2.13) and the boundary condition (2.15) with6∗ continuously differentiable we define

Ec{6∗} =
∫
∂Bx

0

(6∗TN) · ξ dS −
∫

B0

Ŵc(t
∗
1 , t
∗
2 )dA, (3.20)

wheret∗1 , t
∗
2 are the principal Biot stresses associated with6∗ for which t∗1 > 0, t∗2 > 0 (with

t∗3 = 0). Then, theprinciple of maximum complementary energyis stated in the form

Ec{6} > Ec{6∗}, (3.21)

with equality holding if and only if6∗ ≡ 6, the actual stress field.
Combining (3.10) and (3.21) we then have

E{χ∗} > E{χ} = Ec{6} > Ec{6∗} (3.22)

for all kinematically admissibleχ∗ and statically admissible6∗. This provides both upper and
lower bounds on the energy functional associated with the actual solution.

3.3. STRAIN-ENERGY FUNCTIONS

We now justify adoption of the inequalities (3.6)–(3.8) by illustrating that (3.6) and (3.7) hold
for all λ1 andλ2 in respect of two commonly used forms of strain-energy function. We also
note that in each case the inequalitiest1 > 0, t2 > 0 define a convex region in(λ1, λ2)-space
described by

λ2
1λ2 > 1, λ1λ

2
2 > 1. (3.23)

3.3.1. The neo-Hookean strain-energy function
The (incompressible) neo-Hookean strain-energy function has the form

W = 1
2µ(λ

2
1+ λ2

2+ λ2
3− 3), (3.24)

whereµ (> 0) is the shear modulus of the material in its stress-free natural configuration, and
hence, on use of (2.6),

Ŵ (λ1, λ2) = 1
2µ(λ

2
1+ λ2

2+ λ−2
1 λ
−2
2 − 3). (3.25)



74 J. B. Haddow et al.

It follows that

t1 = Ŵ1 = µ(λ1− λ−3
1 λ−2

2 ), t2 = Ŵ2 = µ(λ2− λ−2
1 λ−3

2 ) (3.26)

and we deduce thatt1 > 0, t2 > 0 if and only if (3.23) hold. We also have

Ŵ11 = µ(1+ 3λ−4
1 λ−2

2 ),

Ŵ11Ŵ22− Ŵ 2
12 = µ2(1+ 3λ−4

1 λ−2
2 + 3λ−2

1 λ−4
2 + 5λ−6

1 λ−6
2 ),

which are both positive, and hence (3.6) holds. Next, we note that

Ŵ1− Ŵ2

λ1− λ2
= µ(1+ λ−3

1 λ−3
2 ) > 0,

so that (3.7) follows. Under the conditions (3.23) the inequalities (3.8) hold except in the
trivial case when there is no deformation. The region defined by (3.23) is depicted in Figure 1
as the unbounded (convex) region.

The stress-stretch relations (3.26) cannot be inverted explicitly to giveλ1 andλ2 as func-
tions of t1 andt2. Thus, the complementary energy (3.14) cannot be given explicitly in terms
of t1 andt2. However, if we define

wc(λ1, λ2) ≡ Ŵc(t1, t2) = λ1Ŵ1+ λ2Ŵ2− Ŵ (3.27)

then we obtain an explicit expression

wc(λ1, λ2) = 1
2µ(λ

2
1+ λ2

2− 5λ−2
1 λ−2

2 + 3) (3.28)

for the complementary energy in terms of the principal stretches. For given values oft1 andt2
the corresponding values ofλ1 andλ2 can then be obtained by numerical inversion of (3.26)
in the implementation of the maximum complementary energy principle. This is done in the
example considered in Section 6.

3.3.2. The Varga strain-energy function
The Varga form of (incompressible) strain-energy function is given by

W = 2µ(λ1+ λ2+ λ3− 3), (3.29)

and hence

Ŵ (λ1, λ2) = 2µ(λ1+ λ2+ λ−1
1 λ
−1
2 − 3). (3.30)

Thus,

t1 = Ŵ1 = 2µ(1− λ−2
1 λ
−1
2 ), t2 = Ŵ2 = 2µ(1− λ−1

1 λ−2
2 ) (3.31)
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Figure 1. The region defined by (3.23) in(λ1, λ2)-space lies above and to the right of the continuous curves.

and it is easy to see thatt1 > 0, t2 > 0 if and only if (3.23) hold. Also

Ŵ11 = 4µλ−3
1 λ−1

2 > 0,

Ŵ11Ŵ22− Ŵ 2
12 = 12µ2λ−4

1 λ−4
2 > 0,

Ŵ1− Ŵ2

λ1− λ2
= 2µλ−2

1 λ−2
2 > 0,

so that (3.6) and (3.7) hold.
From the definition (3.14) and use of (3.31) the complementary energy function can be

calculated explicitly as

Ŵc(t1, t2) = 6µ[1− (1− t1/2µ)1/3(1− t2/2µ)1/3], (3.32)

and, from (3.15), the inverse of (3.31) may then be given in the form

λ1 = (1− t1/2µ)−2/3(1− t2/2µ)1/3, λ2 = (1− t1/2µ)1/3(1− t2/2µ)−2/3. (3.33)

Note that it follows from (3.33) that for the stretches to be positive and bounded each oft1
andt2 should be less than the value 2µ.

The neo-Hookean and Varga forms of strain-energy function are special cases of the func-
tion

Ŵ (λ1, λ2) = µ(λα1 + λα2 + λ−α1 λ−α2 − 3)/α, (3.34)

which is a one-term specialization of the class of functions introduced by Ogden [12], where
µα > 0. It is easy to show that this satisfies all the required conditions for validity of the
theory providedα > 1. With appropriate restrictions on the parameters the theory also applies
to a wide range of other commonly used forms of strain-energy function.
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Figure 2. Sketch of the meridional section of the cylindrical membrane showing reference and deformed
configurations.

4. Axial extension of a circular cylindrical membrane

Let the reference circular cylindrical surfaceB0 of the undeformed unstressed membrane be
defined by

R = A, 06 2 6 2π, −L 6 Z 6 L, (4.1)

where(R,2,Z) are cylindrical polar coordinates,A is the (constant) radius of the cylinder
and 2L is its length.

We consider an axially symmetric deformation ofB0 given by

r = r(Z), θ = 2, z = z(Z), (4.2)

where (r, θ, z) are cylindrical polar coordinates in the deformed configuration. The curve
which is the intersection of the deformed membrane surface and a meridian plane is shown
schematically in Figure 2. By symmetry it suffices to consider only that part for which 06
Z 6 L. Henceforth we refer to this curve as the meridian curve. In Figure 2,s denotes the
distance along the meridian curve of a material point with axial coordinateZ andβ is the
angle between the tangent to the curve and the axial direction, as indicated.

The principal stretches in the membrane surface are given by

λ1 = ds

dZ
, λ2 = r

A
, (4.3)

and it is easily shown that

r ′ = λ1 sinβ, z′ = λ1 cosβ (4.4)

and hence

λ1 = (r ′2+ z′2)1/2, (4.5)

where a prime denotes differentiation with respect toZ.
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Since the faces of the membrane are taken to be free of traction the membrane approx-
imation and the axial symmetry dictate that62θ,6Zr,6Zz are the only non-vanishing com-
ponents of the nominal stress tensor6, and they depend only onZ. It follows from (2.17)
that

t1 =
(
62
Zr +62

Zz

)1/2
, t2 = 62θ, (4.6)

and we also note the connections

6Zr = t1 sinβ, 6Zz = t1 cosβ, (4.7)

which are analogous to (4.4).
The nontrivial equilibrium equations obtained by specialization of (2.13) are

d

dZ
6Zr − 62θ

A
= 0, (4.8)

d

dZ
6Zz = 0. (4.9)

It follows from (4.9) that6Zz is constant.
The equilibrium Equations (4.8) and (4.9) can easily be shown to be equivalent to equa-

tions given by Green and Adkins [3, Section 4.11] for the axially symmetric deformation
of a membrane, but for the application of the complementary energy principle, in particular,
Equations (4.8) and (4.9) are more useful. See, also, [1]. We note in passing that from the
above equations it can be shown thatŴ − λ1t1 is constant (independent ofZ). For a general
axisymmetric membrane this result was established by Pipkin [14].

We consider two slightly different sets of boundary conditions.

Problem1. Boundary conditions are prescribed in the form

r = A on Z = ±L, (4.10)

6Zz = F/2πAH ≡ t on Z = ±L, (4.11)

whereF is the prescribed axial load,H is the reference thickness of the membrane and the
notationt is defined therein. For this problem it follows that6Zz = t for all Z. The deformed
half-lengthl = z(L) of the cylinder must be obtained as part of the solution.

For the application of the variational and extremum principles to this problem it is con-
venient to define the energy and complementary energy functionals per unit reference volume
and we write

Ē = E/4πAL, Ēc = Ec/4πAL, (4.12)

recalling thatE andEc are defined per unit membrane thickness. Then, when applied to the
considered boundary-value problem, (3.1) and (3.16) respectively become

Ē{χ} = 1

2L

∫ L

−L
Ŵ (λ1, λ2)dZ − t l

L
, (4.13)
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Ēc{6} = 6Zr(L)A
L
− 1

2L

∫ L

−L
Ŵc(t1, t2)dZ, (4.14)

on adoption of (4.12), where6Zr(L) is the value of the component6Zr of the admissible
stress6 on the cylinder ends.

Problem2. For this problem the boundary condition (4.10) is retained, while (4.11) is replaced
by specification of the axial displacement in the form

z = ±l on Z = ±L. (4.15)

We set

l = λL (4.16)

with λ > 1, thus defining theoverall axial stretch of the cylinder.
The functionals (4.13) and (4.14) are replaced by

Ē{χ} = 1

2L

∫ L

−L
Ŵ (λ1, λ2)dZ, (4.17)

Ēc{6} = 6Zz(L)λ+6Zr(L)A
L
− 1

2L

∫ L

−L
Ŵc(t1, t2)dZ, (4.18)

where6Zz(L) and6Zr(L) are the values of the statically admissible stresses6Zz and6Zr on
the ends of the cylinder,6Zz being constant.

4.1. PRIMITIVE BOUNDS

4.1.1. Problem1
With reference to (3.22), to obtain an elementary upper bound on the energy functional we
choose a kinematically admissible deformation field withλ∗1 = λ∗, λ∗2 = 1, corresponding to
a uniform axial extension. Then, on using the form (4.13) of the energy functional, we obtain

Ē∗ = Ŵ (λ∗,1)− tλ∗, (4.19)

whereĒ∗ is the energy associated with the chosen field.
Similarly, a lower bound is obtained by choosing a statically admissible stress field with

t∗1 = t (to satisfy the axial boundary condition) andt∗2 = 0, corresponding to a uniform
uniaxial tension. In this case, (4.14) gives

Ē∗c = −Ŵc(t,0). (4.20)

By (3.22), the actual energȳE, scaled in accordance with (4.12), is then subject to the
bounds

Ŵ (λ∗,1)− tλ∗ > Ē > −Ŵc(t,0). (4.21)
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The lower bound in (4.21) may also be written, on use of the Legendre transform (3.14)
appropriately specialized, as

Ŵ (λ1, λ2)− λ1t, (4.22)

whereλ1 andλ2 are given as functions oft through

λ1 = ∂Ŵc

∂t1
(t,0), λ2 = ∂Ŵc

∂t2
(t,0). (4.23)

The upper bound in (4.21) is optimized whenλ∗ is such that

∂Ŵ

∂λ1
(λ∗,1) = t. (4.24)

Thus, both bounds in (4.21) can be expressed (implicitly in general) as functions oft and
hence, in principle, as functions of the resulting overall stretch, defined byλ = l/L.

For the neo-Hookean form of strain-energy function this procedure leads to the bounds

1
2µ(3λ

∗−2− λ∗2− 2) > Ē > 1
2µ(4λ

−1
1 − λ2

1− 3), (4.25)

where

µ(λ∗ − λ∗−3
) = t = µ(λ1− λ−2

1 ). (4.26)

For the Varga strain-energy function we obtain the more explicit bounds

4µ[(1− t/2µ)1/2− 1] > Ē > 6µ[(1− t/2µ)1/3− 1]. (4.27)

We take these no further for Problem 1, but for Problem 2 we illustrate the results in more
detail. Numerical results based on the bounds (4.25) are presented in Section 6.

4.1.2. Problem2
For this problem the bounds (4.21) are replaced by

Ŵ (λ,1) > Ē > t∗λ− Ŵc(t
∗,0), (4.28)

whereλ is the prescribed overall axial stretch andt∗ is the admissible axial stress component.
The lower bound in (4.28) is optimized by takingt∗ such that

∂Ŵc

∂t1
(t∗,0) = λ, (4.29)

which (implicitly) givest∗ as a function ofλ. Thus, both bounds in (4.28) are functions ofλ.
For the Varga material we obtain

2µ(λ+ λ−1− 2) > Ē > 2µ(λ+ 2λ−1/2− 3). (4.30)

In non-dimensional form with the terms in (4.30) scaled by 2µ the upper and lower bounds are
plotted forλ > 1 in Figure 3(a) and the associated stressest/2µ are plotted in Figure 3(b). The
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Figure 3. Plot of (a)Ē/2µ and (b)t/2µ againstλ in respect of the upper and lower bounds in (4.30).

upper and lower bounds are quite close together for this example considering the elementary
nature of the chosen test fields.

5. Application of the extremum principles

5.1. MINIMUM ENERGY PRINCIPLE

In order to implement the minimum energy principle we select an axially-symmetric deform-
ation field,χ∗ say, with associated current cylindrical polar coordinatesr∗ andz∗ expressed
as polynomials inZ. For Problem 1, from the definition (4.13), we have

Ē{χ∗} = 1

2L

∫ L

−L
Ŵ (λ∗1, λ

∗
2)dZ −

t l∗

L
, (5.1)

wherel∗ = z∗(L), while for Problem 2 the latter term in (5.1) is omitted.
We adopt a non-dimensionalization in whicĥW, Ŵc, Ē, Ēc and all stress components are

scaled by division by the shear modulusµ and all lengths are scaled by division byA. The
notation, however, is left unchanged by this scaling.

Thus, we requirer∗(±L) = 1, z∗(±L) = ±l∗. We chooser∗ andz∗ to have the forms

r∗ = r∗0 + a1Z
2+ a2Z

4, z∗ = b1Z + b2Z
3, (5.2)

where

a2 = (1− r∗0 − a1L
2)/L4, b2 = (l∗ − b1L)/L

3. (5.3)

It follows that{l∗, r∗0 , a1, b1} is a set of independent parameters and they are chosen, using
a numerical procedure, so that the functional in (5.1), which is determined at discrete points,
is minimized. The principal stretchesλ∗1 andλ∗2 corresponding toχ∗ are obtained from the
nondimensional forms of (4.3)2 and (4.5), where the primes now signify differentiation with
respect to nondimensionalZ. The minimization yields an upper bound for the energy func-
tional Ē and the resultingχ∗, corresponding to the parameters which minimizeĒ{χ∗}, is an
approximate deformation field. An approximationz∗ = ζ(r∗) to the equation of a meridian of
the deformed membrane is then obtained from (5.2).



Application of variational principles 81

5.2. MAXIMUM COMPLEMENTARY ENERGY PRINCIPLE

To apply the complementary energy principle an axially-symmetric statically admissible stress
field 6∗ is chosen with6∗Zr and6∗2θ expressed as polynomials inZ and with6∗Zz constant.
Again, we use the nondimensionalization defined in Section 5.1 above. For Problem 2, from
the definition (4.18), we have

Ēc{6∗} = 6∗Zzλ+6∗Zr(L)
1

L
− 1

2L

∫ L

−L
Ŵc(t

∗
1 , t
∗
2 )dZ, (5.4)

while for Problem 1 the term inλ is omitted.
A polynomial approximation which takes account of the symmetry of the problem and

satisfies the equilibrium Equation (4.8) is given by

6∗Zr =
n∑
i=0

c2i+1Z
2i+1, (5.5)

6∗2θ =
n∑
i=1

(2i + 1)c2i+1Z
2i. (5.6)

To evaluate the functional (5.4) for a given set of coefficientsc2i+1, i ∈ {0,1,2, . . . , n}, t∗1
andt∗2 are found from (4.6), (5.5) and (5.6) and, for Problem 1, from the prescribed constant
value6Zz = t .

In general, difficulties arise in determining the form of the complementary energy function
Ŵc(t

∗
1 , t
∗
2 ). These are avoided, where necessary, by inverting the nondimensional form of

(2.11) numerically in order to determine the stretchesλ∗1, λ
∗
2 corresponding tot∗1 , t

∗
2 at intervals

of Z, and the values ofwc(λ∗1, λ
∗
2), wherewc is defined by (3.27). The integral in (5.4) is then

obtained by numerical integration. A numerical procedure is used to determine the set of
coefficientsc2i+1, i ∈ {0,1,2, . . . , n}, which maximizes (5.4), whose values are obtained at
discrete points. The numerical results presented in Section 6 below are forn = 3 in (5.5) and
(5.6).

The valuesλ∗1, λ
∗
2 obtained from the stress field which maximizes (5.4) can be used to

approximate the meridian curve in the deformed configuration. From the nondimensional
forms of (4.3) and (4.5) we have

z∗′ = (λ∗12− r∗′2)1/2, λ∗2 = r∗, (5.7)

wherer∗ and z∗ denote the values ofr and z in the approximation. Sinceλ∗2 is known at
increments ofZ, then so isr∗, andr∗′ can then be found by numerical differentiation and
substituted into the first equation in (5.7). Numerical integration of the values ofz∗′ for discrete
values ofZ then enablesr∗ to be determined as a function ofz∗.

6. Numerical results and discussion

Numerical results are presented for the neo-Hookean strain-energy function in the form (3.25)
nondimensionalized by division byµ. The results are given for Problem 1 and are illustrated
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Figure 4. Plot of the meridian curve in the deformed configuration for 06 Z 6 2. The dashed curves are
obtained from the potential energy principle and the continuous curves from the complementary energy principle:
(a)F = 4; (b)F = 8; (c)F = 16. Ther scale is five times that for thez scale in (a) and four times in (b) and (c).

Table 1.

F Ē∗ Ē∗c l∗ l∗c λ∗2(L)

4 −0·71080 −0·71088 2·498 2·509 0·9998

8 −1·61452 −1·61456 3·223 3·250 0·9976

16 −4·29709 −4·29710 5·307 5·350 0·9981

for representative valuesL = 2 andH = 0·025 of the dimensionless cylinder length and
membrane thickness.

Upper and lower bounds̄E∗ andĒ∗c (scaled by division byµ) for the energy functional are
given in Table 1 for three representative values of nondimensionalF (defined asF/µAH =
2πt/µ).

It is evident that the upper and lower bounds are very close. The deformed half-lengthsl∗
andl∗c of the cylinder obtained from the energy and complementary energy principles, respect-
ively, are also given in Table 1 along with the value ofλ∗2(L) obtained from the complementary
energy principle.

From the last column of Table 1 we see that the kinematical boundary condition (4.10),
which is equivalent toλ2(±L) = 1, is satisfied to a satisfactory level of approximation by the
deformed configuration obtained from application of the complementary energy principle.

The meridian curves obtained from application of the two principles are shown graphically
in Figure 4 for three values ofF and it is evident that except near the ends the two principles
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Figure 5. Plot of the principal Biot stresses for 06 Z 6 2: (a)t1; (b) t2.

Table 2.

F Ē∗ Ē∗c l∗ l∗c
4 −0·6968 −0·7148 2·4126 2·5265

8 −1·4050 −1·6336 3·0892 3·2894

16 −4·1668 −4·3602 5·2063 5·3703

give almost identical results for the deformation, and even near the ends the difference is small.
The difference has only been made apparent by an expansion of the scale used forr in the
figures. The corresponding variations of the principal Biot stressest1, t2 (nondimensionalized)
with Z are plotted in Figure 5 and these plots confirm the positiveness of the principal stresses
in accordance with the requirements (2.20).

Primitive bounds corresponding to uniform admissible fields have been discussed in Sec-
tion 4.1. In respect of the neo-Hookean strain-energy function values of the upper and lower
bounds on the energy and values ofl∗ andl∗c for Problem 1 have been calculated on the basis
of the discussion in Section 4.1.1. These are given in Table 2.

Clearly, as expected, the bounds shown in Table 2 are not as close as those given in Table 1,
and they enclose those in Table 1.
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The results discussed above are broadly similar to those obtained by Stoker [1], who used
a finite-difference method to solve the governing equations for Problem 2. Direct numerical
comparison is not possible, however, since Stoker’s paper does not contain sufficient detail.
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