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Abstract. In this paper stationary potential-energy and complementary-energy principles are formulated for
boundary-value problems for compressible or incompressible nonlinearly elastic membranes, and full justification
for adoption of the complementary principle is provided. The stationary principles are then extended to extremum
principles, which provide upper and lower bounds on the energy functional associated with the solution of a given
problem. The principles are then illustrated by their application to the nonlinear problem of the axially symmetric
static deformation of an isotropic elastic membrane. In its undeformed natural configuration the membrane has the
form of a circular cylindrical surface. The cylinder is subject to a prescribed (tensile) axial force with the ends of
the cylinder constrained so that their radii remain constant. The alternative boundary condition in which the axial
displacement of the ends is prescribed instead of the axial force is also considered.

The extremum principles are applied first without restriction on the form of strain-energy function in order to
obtain primitive bounds on the energy of Voigt and Reuss type commonly used in composite-material mechanics.
Then, for particular forms of strain-energy function, specific bounds are obtained by selecting suitable trial de-
formation and stress fields and the bounds are optimized using a numerical procedure (which is readily adapted for
other forms of strain-energy function). It is found that these bounds are very close and hence give a good estimate
of the actual energy. The associated deformed geometry of the membrane is described together with the resulting
principal stresses.
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1. Introduction

In this paper we consider a finite axially symmetric static deformation of an incompressible,
isotropic elastic membrane whose undeformed natural reference configuration is a circular
cylindrical surface. Specifically, we consider the deformation arising feither (a) a pre-
scribed axial tensile force, or (b) prescribed axial displacement of the ends of the cylinder
with, in each case, the radii of the cylinder ends held fixed. The inner and outer cylindrical
surfaces are traction free. For problem (b) some numerical solutions were presented by Stoker
[1] in respect of the Mooney-Rivlin form of strain-energy function, but there is, apparently,
no other treatment of these problems available in the literature. However, we note that the
problem of an axially extended membrane cylinder with internal pressure applied to ensure
that the circular cylindrical shape is maintained has been discussed in detail by Haughton and
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Ogden [2] with particular reference to bifurcation from the circular cylindrical shape. We refer
to this paper for citation of other relevant work.

For the problem at hand, as is commonly the case in nonlinear elasticity, the derivation
of a closed-form solution would not seem to be possible, so that a numerical approach is
required. Here, numerical solution is effected through the use of variational principles and
associated extremum principles. Extensive discussion of variational principles for nonlinear
elasticity is contained in Ogden [3, Chapter 5], for example, where problems associated with
the construction of a true complementary energy principle are highlighted. Detailed references
to the literature, which is concerned mostly with three-dimensional bodies, are given in [4].
The development and application of variational principles in nonlinear elasticity has also been
considered by Lee and Shield [5, 6] and Haddow and Ogden [7]. Relatively little work has
been set in the context of membrane theory, although application to a flat circular membrane
under different boundary conditions has been discussed by Koiter [8], Lee and Shield [6] and
Liu et al.[9] for specific forms of strain-energy function.

The problems mentioned in the first paragraph above provide motivation for a general
nonlinearly elastic membrane formulation of complementary variational and extremum prin-
ciples. Such a formulation is provided in this paper as the vehicle for obtaining approximate
solutions for these and related membrane problems.

The basic equations are summarized in Section 2. Since the considered body is a membrane
under tensile loading, a true complementary principle can be constructed unambiguously, as
described in Section 3 for a general class of membrane problems. Conditions which guarantee
the existence of a unique complementary energy function also ensure that the energy func-
tional is minimized and the complementary energy functional is maximized for the (unique)
actual solution of the problem. Details of this are given in respect of a general form of (incom-
pressible, isotropic) strain-energy function. The stated conditions are exemplified in respect
of both the neo-Hookean and Varga strain-energy functions, and in the latter case an explicit
form of the complementary energy function is given. It is noted that the required conditions
also hold for many commonly used forms of strain-energy function.

In Section 4 the specific problems for a cylindrical membrane are formulated and appro-
priate specializations of the energy and complementary energy are derived. Primitive bounds
of Voigt and Reuss type (upper and lower bounds, respectively) on the energy functional as-
sociated with the actual solution are obtained by considering uniform admissible deformation
and stress fields respectively without specialization of the strain-energy function.

The numerical approximation and optimization procedure is described in Section 5 for
both the energy functional and the complementary energy functional. In the latter case we
use a polynomial form of statically admissible stress field and the coefficients of the polyno-
mial are chosen so as to maximize the complementary energy functional. This differs from
the approach proposed by Lee and Shield [5], which was based on a statically admissible
deformation gradient field.

In Section 6 numerical results are presented in respect of the neo-Hookean material and
the closeness of the upper and lower bounds on the energy functional is demonstrated. The
meridian curves obtained from the two principles are shown graphically and the variations
of the principal stresses with the axial coordinate are also illustrated. The results confirm the
positiveness of the principal stresses, which is fundamental to the validity of the analysis.
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2. Basic equations

In formulating the stationary principles of energy and complementary energy and the associ-
ated extremum principles we follow the development described in Ogden [3, Chapter 5] and
Haddow and Ogden [7], but with appropriate modification for the case of a membrane.

For a general treatment of the membrane equations and discussion of the membrane ap-
proximation appropriate to the present circumstances we refer to Haughton and Ogden [10],
or, for specialization to the axially symmetric case, to Haughton and Ogden [2].

Let the membrane be identified with its middle surfa&gin its (undeformed, unstressed)
natural configuration and IétB, denote the bounding curve @,. We takeB, as the refer-
ence configuration and I&t denote the position vector of a point @y relative to some fixed
origin. Let x denote the deformation andthe position vector of the material poiKtin the
deformed configuration, so that

X =x(X) X e Bo, (2.1)

and letB denote the image aBy under the deformation.
Thesurface deformation gradiemin B, denotedF, is defined as

F = Grady, (2.2)
where Grad is the surface gradient operatoiBnWe may also expand in the form
F=xv® @u® 4+ 1,v® @u®, (2.3)

whereu®, u® are the Lagrangian principal axes avid, v® the Eulerian principal axes
of the deformation ofB, (locally tangential toB, and 8 respectively) and.1, A, are the
associated principal stretches.

We may extend (2.3) to the deformation gradient, denétgof the bulk membrane mater-
ial evaluated onB, by writing

A=F+ )\,3V(3) ® U(3), (24)

whereas is the stretch normal to the membrané) is normal to the surfac,, taken in the

sense that®, u®, u® form a right-handed orthonormal triad, an@ is the corresponding

normal to8, with v»¥', v® v also forming a right-handed orthonormal triad.
Analogously to (2.4) the nominal stress tenSam 8B, may be written

S=3%+u®ev®, (2.5)

whereX represents the stress in the surfageandr; the normal stress of8,.

The elastic properties of the membrane surfa&emay be characterized by use of the
strain-energy function of the bulk material averaged through the thickness of the membrane in
the reference configuration, as described by Haughton and Ogden [10]. The resulting energy
function (per unit volume of the bulk material) may be regarded as a functidraofl defined
on By, W(A) say, with, for an incompressible material, the constraint
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detA = Aiodz =1 (26)

satisfied.

More specifically, for an isotropic material, to which attention is now confifédde-
pends oM only through the principal stretches (evaluated®y). Thus, W (A1, A5, A3), this
dependence being indifferent to pairwise interchange;0f.,, 13. The associated principal
Biot stresses,, 1,, t3 0N By are given by

ow ow ow
h=_—, Iy = —, I3 = — (2.7)
8)»1 8)\2 8)\3
for an unconstrained material, and by
8W —l 8W _1 8W _1
1 =— — pA;-, th = — — pA,-, 3= —— — pA 2.8
=0 P 2= o5 PR 3= P (2.8)
for an incompressible material subject to (2.6).
For an isotropic materiak may be written
T =1u® @v? 4+ Lu? @ v, (2.9)

We adopt themembrane approximatiorwhich, in the present context, may be written
simply astz = 0. For an incompressible material we havg = Aglkgl, while for an
unconstrained materiat = dW/dir3 = O enablesi; to be expressed, at least implicitly,
in terms ofy, anda,. In either casé¥V may be treated as a function of andi, only and we
write

W (A1, k2) = Wk, A2, A3), (2.10)

with A3 on the right-hand side replaced by the appropriate function ahda..
For either an incompressible or an unconstrained material it is then easy to see, using
t3 = 0, that

LW LW
1= ’ 2_8)\,2

2.11
A1 (2.11)

Henceforth, we need not distinguish between unconstrained and incompressible materials and
we characterize theAmateriaI properties of the mgmbrane thréugh, 1) = W, A1).

We may also regardV as a function o and write W (F) to avoid duplication of notation.

Then

oW
Z_

=35 (2.12)

When there are no tractions on the membrane surfaces the equations of equilibrium may
be written in the form



Application of variational principles 69

DivX =0 ondByg, (2.13)

where Div is the divergence operator @&3. Expressions for the components of the left-hand
side of (2.13) may be found in, for example, Haughton and Ogden [10], but they are not
needed here.

Equation (2.13) is coupled with edge conditionsaaBy. Such conditions are exemplified

by
x=§&(X) on dBy, (2.14)
E'N=0(X) on 8], (2.15)

whered By = 985 U 083, T denotes transpose| is the unit outward normal to the edge

9 Bo lying (locally) in the tangent plane t8, andé ando are prescribed functions, the latter
representing dead loading. Other types of edge loading may also be considered. In particular,
we shall allow for the possibility that8; andd B3 overlap in the sense that complementary
components of ando are prescribed 0883 N 9B .

We recall (Ogden [3, Chapter 6], [4]) that for an isotropic elastic material we have the polar
decompositior = TR, whereT is the Biot stress tensor aflis the rotation arising in the
(unigue) polar decompositioA = RU of the deformation gradient, whetgis the (positive
definite, symmetric) right stretch tensor. In the present context the appropriate specialization
of this is

> =TRT, (2.16)
and, for a giverz, the principal axes™®, u® of T are determined from

T2=3x37, (2.17)
where (withzz = 0) T has the spectral decomposition

T=nu®@u® + Lu? g u®? (2.18)
and the rotatiorR may be expressed in the form

R=vP@u® +v@gu?, (2.19)

If attention is restricted to membrane stresses which are non-compressive, so that

n=0 1rn=0, (2.20)
then, for a giver such that deE = 7,7, > 0 the polar decomposition (2.16) is unique. In fact,
the strict versions of (2.20) are consequences of the strict local convexity(fef adopted in
Section 3, which has important implications for the construction of a complementary energy
function and for the validity of the principles of minimum energy and maximum complement-

ary energy. The restrictions (2.20) ensure that wrinkling of the membrane is avoided (see, for
example, Pipkin [11]).
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3. Variational and extremum principles

3.1. POTENTIAL ENERGY

For the considered membrane problem pl¢ential energy functionahay be written in the
form

Elx)= | WO, kz)dA—/ o - xds, (3.1)
Bo E¥:

where di is the area element aBy and 5 is an element of arclength @By. In (3.1) we have
taken the reference membrane thickness to be unifornEande definegber unit membrane
thickness. In the integral oveiB? one, two or all three components @fmay be prescribed,
but the complementary componentsyohre prescribed o885 N 0By in the cases in which
one or two components of are specified. If the traction is not prescribed on any pabdt®d
then the integral ove? 8§ is omitted from (3.1).
Let a superposed dot denote a variation in the quantity concerned. Then, considering
variations iny subject to the kinematical boundary conditions, we have

Vi\/ = tlj\l + t25\2 =tr(x F), (3.2)

where use has been made of (2.3), (2.9) and (2.11).
Onusing (3.2) and standard manipulations we may write the first variatifrirothe form

E=—| (DivX)- xdA + (ZTN—-0)- xdSs. (3.3)

B0 B¥:4

Admissible variationsy are taken to be continuously differentiabledty and continuous on
dBo. Sincey is an arbitrary admissible variation, it follows from the principle of virtual work
thatE = 0 leads to Equations (2.13) and (2.15). Thus, we havsttt®nary energy principle
which states that, within the class of kinematically admissible variatiBns stationary if and
only if x is a solution of the boundary-value problem defined by (2.12)—(2.15) with (2.2).

For an actual solution the second variationmfdenotedE may be obtained, after some
manipulation, in the form

B / ir (BE)dA. (3.4)
Bo

whereX is the variation int induced by that iny. An expression for t¢XF) may be deduced
from its counterpart for bulk solids given in Ogden [3, p. 449] for incompressible materials.
Alternatively, if (2.3) and (2.9) are used it may be calculated directly in the form

A Wi — Ao Wo

tr (XF) = )&Wlmfl + 2012 o Win11m2o + A%sznéz + 22 (M35, + X312y
1= A2
Ao W1 — M Wo A A
——————A1A2n12N21 + )»1W177§1 + )»2W277§2, (3.5)

2 =23

whereW; = aW /di1, Wiy = 82W /922, etc. andy;; are the components &F .
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Necessary and sufficient conditions for the inequalit®tf) > 0 to hold are

Wll le . . ..

A A is positive definit 3.6
(‘le W@z) P © (36)
Wy — W,

ME TN 0, (3.7)
Al — A2
Wy > 0, W, > 0, (3.8)

jointly. Note that (3.7) and (3.8) together imply that

il gty 9)
1 2
The condition (3.6) is a statement of strict local convexityWotiq, o). If (3.6) holds
for all A, and A, then (3.7) follows. The additional inequalities (3.8) then ensure Whas
(locally) strictly convex as a function &f. For convexity rather than strict convexity positive
definiteness is replaced by positive semi-definiteness in (3.6}-dmnd> in (3.7) and (3.8), in
which case the results were obtained by Pipkin [11]. We emphasize that these results are valid
for either unconstrained or incompressible materials.
If (3.6)—(3.8) hold, thenZ > 0 for all admissible variations and the energy functional
E associated with an actual solution (assuming such a solution existddpéglaminimum
Further, we emphasize that if the region(®f, A,)-space for which (3.6)—(3.8) hold is convex
then it follows thatW is globally strictly convex as a function . Under these circumstances
the actual solutiory is unique and provides global minimumof the energy. Moreover, the
stress-deformation relation (2.12) is then uniquely invertible. Thus, we havextrEmum
principle of minimum potential enerdy the form

E{x*} > E{x} (3.10)

for all admissible deformation fieldg*, where x is the actual solution and equality holds
if and only if x* = x. Admissible fields are taken to be twice-continuously differentiable
deformationsy* which satisfy the prescribed conditions 683 andd85 N 087. Hence-
forth, we assume that the conditions for the validity of (3.10) are met, and in Section 3.3 we
demonstrate that two common forms of strain-energy function do indeed satisfy the conditions
for this to be the case.

The explicit form of E{x*} in (3.10) is

E{x*} = vi/(/\*,/\z)dA—/ o - x*ds, (3.11)

By RE:H
whereA], 15 are the principal stretches calculated frgrmh
3.2. COMPLEMENTARY ENERGY

For an actual solution Equation (3.1) may be re-written in the form



72 J.B.Haddow et al.
E{x} = / (ZTN) - £dS — / [tr(ZF) — W(F)]dA, (3.12)
aB Bo

where X is the actual stress field associated withwith & (or some of its components)
prescribed ord B;.
The integrand of the integral oves in (3.12) may be written

tr(ZF) — W(F) = A1 + Aoto — W(Aq, A2). (3.13)

Under the assumptions adopted in Section 3.1 strict convexily @f,, 1,) is guaranteed and
ensures the existence of a unique Legendre transtgrm, t,) given by

W, (11, 12) = Aats + hato — W (A1, A2), (3.14)

interpreted as theomplementary energy per unit reference voluMereover, the inverse of
the stress-stretch relations (2.11) is unique and can be written

AW, AW,
A= , = ) 3.15

As noted above, for a given nominal stressa unique Biot stres§ with 73 = 0 and
tp = 0, > 0is defined and this is consistent with (3.8). Using (3.13) and (3.14) we may
therefore regard the right-hand side of (3.12) as a functional ahd write

E{Z)= [ (Z"N)-&dS— [ W.(11,12)dA4, (3.16)
By Bo

which defines the complementary energy functional for the actual solution.
For admissible variation&, continuously differentiable and satisfying the equilibrium
eguation and stress boundary condition the first variatiow ofnay be written

We = A + Aop = tr(FY), (3.17)

analogously to (3.2).
Taking the first variation of (3.16) and using (3.17) followed by application of the diver-
gence theorem we obtain

E.= / tr[(Grady — F)X]dA, (3.18)
Bo

wherey is a deformation function satisfying the placement boundary condition. This provides
the complementary variational principléor an isotropic elastic membrane. It states that,
within the class of statically admissible variations, is stationary if and only ifX is a
solution of the boundary-value problem, with deformation gradierds constructed above,
being the gradient of a deformatignsatisfying the kinematical boundary conditions. Note,
however, that the ‘only if’ part does not follow directly from (3.18) since the variatiBns
being divergence free, are not entirely arbitrary. The result is reached indirectly through the
use of stress functions in a standard way.
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Analogously to the procedure for calculatiy we calculate the second variatidh for
an actual solution. This leads to

E.= —/ tr (XF)dA, (3.19)
Bo

whereF is the variation irF induced by that irE.

Thus, under the inequalities (3.6)—(3.8) which ensure fhat- 0 we haveE. < O.
Therefore, for an actual solution the complementary energyléga maximum Under the
conditions which ensure thd{y} is a global minimum for the actual solutigp, it follows
that E.{X} is aglobal maximunof the complementary energy for the actual stress fiId

For any statically admissible stress fi@ld, that isX* satisfying the equilibrium Equation
(2.13) and the boundary condition (2.15) wEkli continuously differentiable we define

E{Z"y= [ (Z'N)-£dS— | W.(5,15)d4, (3.20)
0B} Bo

wheret;], 5 are the principal Biot stresses associated \#thfor which ¢ > 0, > 0 (with
t3 = 0). Then, theprinciple of maximum complementary energgtated in the form

E{Z} > E{Z"), (3.21)

with equality holding if and only if£* = X, the actual stress field.
Combining (3.10) and (3.21) we then have

E{x*} > E{x} = E.{X} > E.{X"} (3.22)

for all kinematically admissibleg* and statically admissibIE*. This provides both upper and
lower bounds on the energy functional associated with the actual solution.

3.3. STRAIN-ENERGY FUNCTIONS

We now justify adoption of the inequalities (3.6)—(3.8) by illustrating that (3.6) and (3.7) hold
for all A; and A, in respect of two commonly used forms of strain-energy function. We also
note that in each case the inequalities> 0, r» > 0 define a convex region if,, A,)-space
described by

Mro =1, MmAS> L (3.23)
3.3.1. The neo-Hookean strain-energy function
The (incompressible) neo-Hookean strain-energy function has the form

W= Zu(3 413 +13-23), (3.24)

whereu (> 0) is the shear modulus of the material in its stress-free natural configuration, and
hence, on use of (2.6),

W (k1 A2) = (A2 + A2+ A7%2,% = 3). (3.25)
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It follows that

n=W=p01-2239, =Wo=pu02—17%25° (3.26)
and we deduce that > 0, t, > 0 if and only if (3.23) hold. We also have

Wi1 = w14 327%259),

WiaWay — W2, = u?(1+ 307452 + 347254 + 50705 9),

which are both positive, and hence (3.6) holds. Next, we note that

Wi — W,
RASINS = M(1+)VI3A'£3) > 0,
A — A2

so that (3.7) follows. Under the conditions (3.23) the inequalities (3.8) hold except in the
trivial case when there is no deformation. The region defined by (3.23) is depicted in Figure 1
as the unbounded (convex) region.

The stress-stretch relations (3.26) cannot be inverted explicitly toigiead A, as func-
tions ofr; andz,. Thus, the complementary energy (3.14) cannot be given explicitly in terms
of 11 andz,. However, if we define

we(he, A2) = Welt1, 12) = Wi + Ao Wo — W (3.27)
then we obtain an explicit expression
we(he, ) = 3u(A] + 43 — BAT A% + 3) (3.28)
for the complementary energy in terms of the principal stretches. For given valuesnaofr,
the corresponding values #f and, can then be obtained by numerical inversion of (3.26)
in the implementation of the maximum complementary energy principle. This is done in the

example considered in Section 6.

3.3.2. The Varga strain-energy function
The Varga form of (incompressible) strain-energy function is given by

W = 2uu(hy + A2+ A3 —3), (3.29)
and hence

W, A2) = 2u(ha 4+ A2 + 27125 = 3). (3.30)

Thus,

n=W=2ul-27%"Y, nn=Wo=2ul-2r7"9 (3.31)
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A
Figure 1. The region defined by (3.23) ifd.1, A2)-space lies above and to the right of the continuous curves.

and it is easy to see that> 0,7, > 0 if and only if (3.23) hold. Also
W]_l = 4M)»I3)\.2_l > 0,

W]_]_sz - W122 = 12M2AI4A2‘4 > 0,

Wi — W
MAE AL - ZM)\IZAEZ > 0,
AL — A2

so that (3.6) and (3.7) hold.
From the definition (3.14) and use of (3.31) the complementary energy function can be
calculated explicitly as

We(t1, t2) = 6ull — (1 — t1/20)"3 (1 = 12/21)"7), (3.32)
and, from (3.15), the inverse of (3.31) may then be given in the form

m=0=n/20)7PA - /20" ha =1 — /20731 - 1/20)72R (333

Note that it follows from (3.33) that for the stretches to be positive and bounded each of
andz, should be less than the valug 2

The neo-Hookean and Varga forms of strain-energy function are special cases of the func-
tion

Wi, A2) = n (S + 25 + 214" — )/, (3.34)
which is a one-term specialization of the class of functions introduced by Ogden [12], where
we > 0. It is easy to show that this satisfies all the required conditions for validity of the

theory providedr > 1. With appropriate restrictions on the parameters the theory also applies
to a wide range of other commonly used forms of strain-energy function.
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Reference ‘ configuration
conﬁgurrmon

Figure 2. Sketch of the meridional section of the cylindrical membrane showing reference and deformed
configurations.

4. Axial extension of a circular cylindrical membrane

Let the reference circular cylindrical surfag® of the undeformed unstressed membrane be
defined by

R=A, 0<O©<2r, -L<Z<L, (4.1)

where(R, ®, Z) are cylindrical polar coordinateg is the (constant) radius of the cylinder
and Z is its length.
We consider an axially symmetric deformation®g given by

r=r(Z), 0=0, z=1z(2), (4.2)

where (r, 6, z) are cylindrical polar coordinates in the deformed configuration. The curve
which is the intersection of the deformed membrane surface and a meridian plane is shown
schematically in Figure 2. By symmetry it suffices to consider only that part for whigh 0
Z < L. Henceforth we refer to this curve as the meridian curve. In Figused2notes the
distance along the meridian curve of a material point with axial coordidaéamd g is the
angle between the tangent to the curve and the axial direction, as indicated.

The principal stretches in the membrane surface are given by

= j—;, o= %, (4.3)
and it is easily shown that

r = AiSing, 7 = A1 cospB (4.4)
and hence

a =04+ 7HY2, (4.5)

where a prime denotes differentiation with respectto
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Since the faces of the membrane are taken to be free of traction the membrane approx-
imation and the axial symmetry dictate thgg,, X, X7, are the only non-vanishing com-
ponents of the nominal stress ten®yrand they depend only od. It follows from (2.17)
that

1/2
h= (E%r + E%z) / , 2= Xog, (4.6)
and we also note the connections
Yz, = 11 SiNg, ¥z, = 11 COSB, 4.7

which are analogous to (4.4).
The nontrivial equilibrium equations obtained by specialization of (2.13) are

d Yog

—¥,, — == =0, 4.
dz 7* 2 Y (4.8)
d

—3y,. =0. 4.9
dZ VA4 ( )

It follows from (4.9) thatX ;. is constant.

The equilibrium Equations (4.8) and (4.9) can easily be shown to be equivalent to equa-
tions given by Green and Adkins [3, Section 4.11] for the axially symmetric deformation
of a membrane, but for the application of the complementary energy principle, in particular,
Equations (4.8) and (4.9) are more useful. See, also, [1]. We note in passing that from the
above equations it can be shown tiiat— A1, is constant (independent &f). For a general
axisymmetric membrane this result was established by Pipkin [14].

We consider two slightly different sets of boundary conditions.

Probleml. Boundary conditions are prescribed in the form
r=A onZ==L, (4.10)
Yz, =F/2tAH=t on Z ==L, (4.11)

whereF is the prescribed axial load] is the reference thickness of the membrane and the
notationt is defined therein. For this problem it follows tiag, = ¢ for all Z. The deformed
half-length! = z(L) of the cylinder must be obtained as part of the solution.

For the application of the variational and extremum principles to this problem it is con-
venient to define the energy and complementary energy functionals per unit reference volume
and we write

E = E/4r AL, E.=E./4r AL, (4.12)

recalling thatE and E. are defined per unit membrane thickness. Then, when applied to the
considered boundary-value problem, (3.1) and (3.16) respectively become

E —l/LvT/,\ apydz — (4.13)
{X}_ZL » (A1, A2) -7 .
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E{Z}=% (L)é i/Lvt/(z 12)dZ (4.14)
c — Zr I 2L . c\l1, 12 s .

on adoption of (4.12), wher&,, (L) is the value of the componeii,, of the admissible
stressX on the cylinder ends.

Problem2. For this problem the boundary condition (4.10) is retained, while (4.11) is replaced
by specification of the axial displacement in the form

z==%l on Z==L. (4.15)
We set
=)L (4.16)

with A > 1, thus defining theverall axial stretch of the cylinder.
The functionals (4.13) and (4.14) are replaced by

- 1 L.
E{x} =5 Wy, Ar2)dZ, (4.17)
oL |,
_ A 1 [F.
EAS) = S, (L)h + S, (L) = — —/ W, (1, 12)dZ, (4.18)
L 2L/,

whereX . (L) andX . (L) are the values of the statically admissible stregsgsandX, on
the ends of the cylindeg; ;, being constant.

4.1. FRIMITIVE BOUNDS

4.1.1. Probleml

With reference to (3.22), to obtain an elementary upper bound on the energy functional we
choose a kinematically admissible deformation field wifh= A*, 15 = 1, corresponding to

a uniform axial extension. Then, on using the form (4.13) of the energy functional, we obtain

E*=W(@QH*, 1) — 1A%, (4.19)
whereE* is the energy associated with the chosen field.
Similarly, a lower bound is obtained by choosing a statically admissible stress field with

tf = t (to satisfy the axial boundary condition) anfl = 0, corresponding to a uniform
uniaxial tension. In this case, (4.14) gives

E* = —W.(1,0). (4.20)

By (3.22), the actual energ¥, scaled in accordance with (4.12), is then subject to the
bounds

WO, 1) — A" > E > —W.(z, 0). (4.21)
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The lower bound in (4.21) may also be written, on use of the Legendre transform (3.14)
appropriately specialized, as

W()\l, )\2) — A1f, (422)

wherei; anda, are given as functions efthrough

AW, AW,
A = t,0), Ao = t,0). 4.23
L= a0 (,0) 2= S0 (z,0) ( )

The upper bound in (4.21) is optimized whEhis such that

oW
—51D =1 4.24
50D (4.24)
Thus, both bounds in (4.21) can be expressed (implicitly in general) as functiananof
hence, in principle, as functions of the resulting overall stretch, defined=by/L.

For the neo-Hookean form of strain-energy function this procedure leads to the bounds

WMENT A=) > E > du@gt -2 3), (4.25)
where
pF =273 =1 = (g — A79). (4.26)

For the Varga strain-energy function we obtain the more explicit bounds
Al —t/2u)"? = 1] 2 E > 6ul(1 - t/2u)"* — 1. (4.27)

We take these no further for Problem 1, but for Problem 2 we illustrate the results in more
detail. Numerical results based on the bounds (4.25) are presented in Section 6.

4.1.2. Problem2
For this problem the bounds (4.21) are replaced by

W, 1) = E >t*A— W.(t*,0), (4.28)

whereA is the prescribed overall axial stretch arids the admissible axial stress component.
The lower bound in (4.28) is optimized by takingsuch that

AW,
oty

(t.0) = A, (4.29)

which (implicitly) givest* as a function of.. Thus, both bounds in (4.28) are functionsiof
For the Varga material we obtain

2uA+ A =) > E>2u(0+207Y2 - 3). (4.30)

In non-dimensional form with the terms in (4.30) scaled pytBe upper and lower bounds are
plotted forA > 1 in Figure 3(a) and the associated stresg2s are plotted in Figure 3(b). The
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Figure 3. Plot of (a) E/2u and (b)r/2u againstk in respect of the upper and lower bounds in (4.30).

upper and lower bounds are quite close together for this example considering the elementary
nature of the chosen test fields.

5. Application of the extremum principles

5.1. MINIMUM ENERGY PRINCIPLE

In order to implement the minimum energy principle we select an axially-symmetric deform-
ation field, x* say, with associated current cylindrical polar coordinateandz* expressed
as polynomials irZ. For Problem 1, from the definition (4.13), we have

- * 1 b * a ok 1
Eix*) = Z/ Wi apdz - 5.1)
—L

wherel* = z*(L), while for Problem 2 the latter term in (5.1) is omitted.

We adopt a non-dimensionalization in whidh, W, E, E, and all stress components are
scaled by division by the shear modulusand all lengths are scaled by division |y The
notation, however, is left unchanged by this scaling.

Thus, we require*(x£L) = 1, z*(£L) = +I*. We choose* andz* to have the forms

r*=ry+ a1Z% + apZ%,  7F =bZ + byZ°, (5.2)
where
ay=(1—ri —a;L?)/L* by= (I* — b L)/ L3 (5.3)

It follows that{l*, rj, a1, b1} is a set of independent parameters and they are chosen, using
a numerical procedure, so that the functional in (5.1), which is determined at discrete points,
is minimized. The principal stretcheg and 1} corresponding tg* are obtained from the
nondimensional forms of (4.8and (4.5), where the primes now signify differentiation with
respect to nondimensional. The minimization yields an upper bound for the energy func-
tional E and the resulting*, corresponding to the parameters which minimie*}, is an
approximate deformation field. An approximatigh= ¢ (r*) to the equation of a meridian of
the deformed membrane is then obtained from (5.2).
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5.2. MAXIMUM COMPLEMENTARY ENERGY PRINCIPLE

To apply the complementary energy principle an axially-symmetric statically admissible stress
field X* is chosen withx’, and 2§, expressed as polynomials ifiand with X7 _ constant.
Again, we use the nondimensionalization defined in Section 5.1 above. For Problem 2, from
the definition (4.18), we have

r * * * 1 1 - * ok

EAE") = S50+ 3, (L] =5 | Wl 5)dZ, (5.4)
while for Problem 1 the term i is omitted.

A polynomial approximation which takes account of the symmetry of the problem and
satisfies the equilibrium Equation (4.8) is given by

n

DI Zczi+122i+l, (5.5)
i=0

Top = D (20 + Dega 2%, (5.6)
i=1

To evaluate the functional (5.4) for a given set of coefficients,, i € {0,1,2,...,n}, ]

and¢; are found from (4.6), (5.5) and (5.6) and, for Problem 1, from the prescribed constant
valuex,, =r.

In general, difficulties arise in determining the form of the complementary energy function
Wc(tf, t3). These are avoided, where necessary, by inverting the nondimensional form of
(2.11) numerically in order to determine the stretchigs\ corresponding tef, ¢; at intervals
of Z, and the values ob. (13, 1%), wherew, is defined by (3.27). The integral in (5.4) is then
obtained by numerical integration. A numerical procedure is used to determine the set of
coefficientscy; 1, i € {0, 1, 2, ..., n}, which maximizes (5.4), whose values are obtained at
discrete points. The numerical results presented in Section 6 below aresf&in (5.5) and
(5.6).

The valuesii, 15 obtained from the stress field which maximizes (5.4) can be used to
approximate the meridian curve in the deformed configuration. From the nondimensional
forms of (4.3) and (4.5) we have

2= 7Y =0t (5.7)
wherer* andz* denote the values of and z in the approximation. Sincg} is known at
increments ofZ, then so isr*, andr*' can then be found by numerical differentiation and

substituted into the first equation in (5.7). Numerical integration of the valugs$fof discrete
values ofZ then enables* to be determined as a function of.

6. Numerical results and discussion

Numerical results are presented for the neo-Hookean strain-energy function in the form (3.25)
nondimensionalized by division kyy. The results are given for Problem 1 and are illustrated
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0.9F /

9.8t

Figure 4. Plot of the meridian curve in the deformed configuration foK0Z < 2. The dashed curves are
obtained from the potential energy principle and the continuous curves from the complementary energy principle:
(8) F = 4; (b) F = 8; (c) F = 16. Ther scale is five times that for thescale in (a) and four times in (b) and (c).

Table 1.

F E* E} I* I A5(L)

4 —-071080 —0-71088 2498 2509 09998
8 —1.61452 -1.61456 3223 3250 09976
16 —4.29709 —4.29710 5307 5350 09981

for representative values = 2 and H = 0-025 of the dimensionless cylinder length and
membrane thickness.

Upper and lower bound&* and £} (scaled by division by:) for the energy functional are
given in Table 1 for three representative values of nondimensiéridefined asF'/uAH =
2t/ ).

It is evident that the upper and lower bounds are very close. The deformed half-léngths
and!; of the cylinder obtained from the energy and complementary energy principles, respect-
ively, are also given in Table 1 along with the value.y¢L) obtained from the complementary
energy principle.

From the last column of Table 1 we see that the kinematical boundary condition (4.10),
which is equivalent ta.,(+L) = 1, is satisfied to a satisfactory level of approximation by the
deformed configuration obtained from application of the complementary energy principle.

The meridian curves obtained from application of the two principles are shown graphically
in Figure 4 for three values df and it is evident that except near the ends the two principles
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Figure 5. Plot of the principal Biot stresses forQ Z < 2: (a)t1; (b) 2.

Table 2.

F E* E} I* I*

& [&

4 06968 —0-7148 24126 25265
8 —1.4050 -1.6336 30892 32894
16 —4.1668 —4-3602 52063 53703

give almost identical results for the deformation, and even near the ends the difference is small.
The difference has only been made apparent by an expansion of the scale uséd thoe
figures. The corresponding variations of the principal Biot stregses(nondimensionalized)

with Z are plotted in Figure 5 and these plots confirm the positiveness of the principal stresses
in accordance with the requirements (2.20).

Primitive bounds corresponding to uniform admissible fields have been discussed in Sec-
tion 4.1. In respect of the neo-Hookean strain-energy function values of the upper and lower
bounds on the energy and valuedoand!} for Problem 1 have been calculated on the basis
of the discussion in Section 4.1.1. These are given in Table 2.

Clearly, as expected, the bounds shown in Table 2 are not as close as those given in Table 1,
and they enclose those in Table 1.
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The results discussed above are broadly similar to those obtained by Stoker [1], who used
a finite-difference method to solve the governing equations for Problem 2. Direct numerical
comparison is not possible, however, since Stoker’s paper does not contain sufficient detail.
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